NB and HMM

  • Naive Bayes Model
  • Hidden Markov Model
  • More detail about HMM
  • NB -> HMM

Naive Bayes Review

Model (x - feature vector, y - one label)

$$p(y,x)=p(y)\prod_{k=1}^{K} p(x_k|y)$$

  • Training: estimate probabilities by likelihood maximization
  • Inference: $y*=argmax[p(x,y)]$

如果是在一系列观测序列 $x=(x_{1}, \dots, x_{n})$ 的基础上来预测一个类别序列 $y=(y_{1}, \dots, y_{n})$, 我们可以建立一个简单的序列模型:把单一的NB模型乘起来

$p(\vec{y} \mid \vec{x}) = \prod_{i=1}^{n} p(y_{i}) \cdot p(x_{i} \mid y_{i})$

  • 序列中的每一个位置只有一个Feature, 条件依赖于类别 $y_i$
  • 并不能捕获观测变量 $x_i$ 之间的交织关系
Machine Learning Applications and practices