Multi convolution layers
Max Pooling
Average Pooling
Sum Pooling
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
G(m,n)=(f∗h)[m,n]=∑j∑kh(j,k)f[m−j,n−k]
Padding: p=(f−1)/2
Striding
nout=⌊nin+2p−fs+1⌋
The third dimension
Tensors Dimensions
Connections Cutting and Parameters Sharing
Two important features of CNN
Convolutional Layer Backpropagation
dZ[l]=dA[l]∗g′(Z[l])
dA+=∑nhm=0∑nwn=0W⋅dZ[m,n]
Pooling Layer
Pooling Layers Backpropagation